
Synthesis of Porphene, an Antiaromatic Analog of Graphene

T. F. Magnera¹, P. I. Dron¹, J. P. Bozzone¹, M. Jovanović¹, I. Rončević², W. Bu³, E. M. Miller⁴, J. Michl^{1,2*}

¹Department of Chemistry, University of Colorado, Boulder, CO 80309-0215, U.S.A., ²Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences; Prague, Czech Republic, ³ChemMatCARS, University of Chicago; Lemont, IL 60439, U.S.A., ⁴Chemistry and Nanoscience Center, National Renewable Energy Laboratory; Golden, CO 80401, U.S.A.

Two-dimensional organic materials offer atomic precision for optoelectronics and energy-efficient nanoelectronics, but most are not easily patterned and tuned. The fully conjugated Zn-porphene, $(C_{20}N_4Zn)_{\infty}$ has now been prepared from Zn porphyrin by oxidative polymerization on aqueous surface and transferred to solid substrates. Its structure was established by imaging as well as in-situ and ex-situ spectroscopy. Reversible insertion of other metal ions is possible and promises an atomic canvas for painting with thousands of distinct metal ions and ligands without taking any π centers out of conjugation. Unlike earlier computational results, which predicted a *P4mm* (D_{4h}) square unit cell and metallic conductivity, ours resemble those for antiaromatic molecules and predict Zn-porphene to be a two-dimensional antiaromatic semiconductor with a pair of *P2mm* (D_{2h}) rectangular unit cells, rapidly interconverting via a *P4mm* (D_{4h}) square structure by tunneling and/or thermal excitation. This result is supported by measurements of electrical conductivity and of N(1s) chemical shift in X-ray photoelectron spectra.

